
www.manaraa.com

Research Article
Inastemp: A Novel Intrinsics-as-Template Library for
Portable SIMD-Vectorization

Berenger Bramas

Max Planck Computing and Data Facility (MPCDF), Gieenbachstrae 2, 85748 Garching, Germany

Correspondence should be addressed to Berenger Bramas; berenger.bramas@mpcdf.mpg.de

Received 10 February 2017; Revised 19 June 2017; Accepted 14 August 2017; Published 20 September 2017

Academic Editor: Davide Ancona

Copyright © 2017 Berenger Bramas. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The development of scientific applications requires highly optimized computational kernels to benefit from modern hardware. In
recent years, vectorization has gained key importance in exploiting the processing capabilities of modern CPUs, whose evolution is
characterized by increasing register-widths and core numbers, but stagnating clock frequencies. In particular, vectorization allows
floating point operations to be performed at a higher rate than the processor’s frequency. However, compilers often fail to vectorize
complex codes and pure assembly/intrinsic implementations often suffer from software engineering issues, such as readability and
maintainability. Moreover, it is difficult for domain scientists to write optimized code without technical support. To address these
issues, we propose Inastemp, a lightweight open-source C++ library. Inastemp offers a solution to develop hardware-independent
computational kernels for theCPU.These kernels are portable across compilers and floating point precision and vectorized targeting
SSE(3,4.1,4.2), AVX(2), AVX512, or ALTIVEC/VMX instructions. Inastemp provides advanced features, such as an if-else statement
that vectorizes branches that cannot be removed. Our performance study shows that Inastemp has the same efficiency as pure
intrinsic approaches onmodern architectures. As side-results, this study providesmicro benchmarks on the latestHPCarchitectures
for three different computational kernels, emphasizing comparisons between scalar and intrinsic-based codes.

1. Introduction

The development of efficient computational kernels for CPUs
is useful for various scientific applications that have hot-spots
that cannot be accelerated using vendor-provided libraries,
such as LAPACK/BLAS. Such kernels must have an appropri-
ate memory access pattern and use the CPUs’ full capacities
for achieving high performance. On the one hand, memory
access tuning is usually algorithm dependent [1] and tied to
the data structures. On the other hand, the CPU provides
different features for computing faster, but these must be
explicitly enabled. Among these features, vectorization—that
is, the capacity of modern CPUs to apply a single instruction
on multiple data (SIMD)—is becoming indispensable for
the development of efficient kernels. While the difference
between a scalar code and its vectorized equivalent was only
of a factor of two in the year 2000 (SSE technology and double
precision), the difference is now up to a factor of four onmost
CPUs (AVX) and up to eight (AVX512) on the latest CPU
generation.

However, vectorization is troublesome to achieve because
it must be done with specific assembly instructions or their
intrinsic aliases. Moreover, the explicit use of vectorization
ties code to the hardware and leads to issues in code fac-
torization, maintainability, and readability.These realizations
motivated the HPC community to create dedicated software
and libraries to vectorize computational codes. Some of them,
called autovectorization tools, help developers by converting
high-level codes into vectorized source codes or executable
binaries. Many compilers support this feature, but they fail
to be vectorized in many cases, despite their promotion by
vendors, who argue that compilers do complete optimization
work. Meanwhile, more advanced autovectorization software
has been designed, as in [2], where the authors use a high-
level language to describe a formula that is converted into
an optimized source code targeting CPUs or GPUs. However,
conversion and optimization of code is an ongoing research
topic. Furthermore, some algorithms can be vectorized only
if they are expressed at a higher level than what these
tools get as input. This is why the community has proposed

Hindawi
Scientific Programming
Volume 2017, Article ID 5482468, 18 pages
https://doi.org/10.1155/2017/5482468

https://doi.org/10.1155/2017/5482468

www.manaraa.com

2 Scientific Programming

another family of tools, called vectorization libraries. These
libraries provide an abstraction of the hardware vector that
the programmer manipulates to convert a scalar code to its
vectorized equivalent. This allows the developer to focus on
the algorithm, its transformation, and the data access. All the
hardware specificities are managed by the library, with low-
level instructions.

The challenges for the development of a vectorization
library can be summarized in three points: first, there must
be zero cost in performance compared to a native low-level
implementation. Second, the degree of abstraction must be
appropriate to the expertise of the targeted users, and the
tool should provide the features needed by the targeted field.
Finally, a vectorization library must be easy to use and to
incorporate into an existing project. Additionally, it should
support a wide range of hardware and stay up to date with
new hardware, or it will simply become useless.

A possible abstraction mechanism is to use the template
feature from the C++ language to manage vectorization. The
idea of using templates to provide a generic layer above
intrinsic functions, as we propose in this paper, is not new
and was first proposed a decade ago [3]. It has more recently
appeared in dedicated tools [4–11] and in the scope of HPC
projects [12, 13]. However, this approach has not become
widespread because it is incompatible with the two most
widely used languages in HPC, which are C and Fortran.
Meanwhile, in recent years, C++ and software engineering
have grown in popularity in the HPC community [14, 15],
making solutions that rely on this language more feasible.
Most of the existing vectorization libraries have performance
similar to pure intrinsic-based code, and their differences
mainly concern design, features, and code expression. As
an example, OpenVec [11] is an open-source library that
provides its own data type but chooses at compile time which
instruction set to use. It is a C/C++ code that remains at low
level and allows abstraction of the hardware in a simple way.
Like most other tools, it is appropriate for experts, it does
not target scientific programming only, and it has not been
updated to the latest available hardware so far.

These considerations were the starting point of our
Inastemp library, initiated while implementing Complexes-
pp, a C++ biophysics application with coarse-grained inter-
actions (publication in preparation). We wanted to propose
a system that lets scientists integrate new kernels with
automatic vectorization. Furthermore, our objective was to
use the same approach for several other projects and to
factorize the knowledge and the investment using intrinsic
operators. We rather propose a tool for nonexpert developers
to implement computationally intensive numerical kernels
and at the same time aim for a clean and easy-to-maintain
software design. The prominent features of our library are a
branchmechanism, CPU detection during the configuration,
and various numerical operations.

The current paper is organized as follows. We describe
the principles of vectorization and the main techniques to
apply this optimization in Section 2. Then, we present the
intrinsics-as-template method, Inastemp, and some related
patterns in Section 3. We dedicate Section 4 to Inastemp’s
advanced branch features and Section 5 to a brief comparison

+

=

Float a;

Float b;

a + b a + b a + b

__m128 a;

__m128 b;

__m256 a;

__m256 b;

Figure 1: Summation example of single precision floating points
values using (yellow square) scalar standard C++ code, (red square)
SSE vector of four values, and (green square) AVX vector of eight
values.

between Inastemp and two existing libraries. Finally, we
provide some examples and describe their performance on
modern architectures.

2. Background

2.1. Common Vectorization Strategies

2.1.1. Vectorization Overview. The term vectorization refers
to a CPU’s feature to apply a single operation/instruction to
a vector of values instead of only a single value [16]. It is
common to refer to this concept by Flynn’s taxonomy term,
SIMD, for single instruction on multiple data. By adding
SIMD instructions/registers to CPUs, it has been possible to
increase the peak performance of single cores, despite the
stagnation of the clock frequency. The same strategy is used
on new hardware, where the length of the SIMD registers has
continued to increase. In the rest of the paper, we use the term
vector for the data type managed by the CPU in this sense. It
has no relation to an expandable vector data structure, such as
std::vector. The size of the vectors is variable and depends on
both the instruction set and the type of vector element and
corresponds to the size of the registers in the chip. Vector
extensions to the x86 instruction set, for example, are SSE
[17], AVX [18], and AVX512 [19], which support vectors of
sizes 128, 256, and 512 bits, respectively. This means that an
SSE vector is able to store four single precision floating point
numbers or two double precision values. Figure 1 illustrates
the difference between a scalar summation and a vector
summation for SSE or AVX, respectively.

Some operations are performedwith one instructionwith
some sets, but with a combination of instructions with others.
When a desired operation is performed with several instruc-
tions, this leads to different possible implementations, each
having different performance. For example, there is usually
no instruction to perform a reduction or horizontal/vector
summation, that is, the sum of all the values contained in a
vector to get a scalar.This operation is widely used, andmany
developers write their own instruction combination, leading
to different implementations and duplicated efforts.

2.1.2. Compiler-Based Vectorization. Relying on the compil-
ers’ ability to perform optimizations offers many advantages,
since it is common to start the development of a new
kernel in standardC/C++/Fortran, first without any low-level

www.manaraa.com

Scientific Programming 3

optimizations. At this level, optimizations are limited but they
leave the code readable and easy to maintain. However, it is
not easy to improve a code such that it will be adequately
optimized by a compiler. The programmer writes the code
from his comprehension of the compiler’s interpretation
and optimization stages, which may not be the best way
to express the original idea and may even lead to negative
optimizations. Moreover, among the algorithms that solve
the same problem, some are more appropriate to be imple-
mented using vectorization such that the conversion is easier
for a human [20]. To help programmers and to use their
knowledge about the computation, some compilers come
with their own dedicated pragmas to mark variables or loop
optimizations. But some of these pragmas are not portable
and still require advanced technical knowledge to be used
correctly.While the latter point may be attenuated in the near
future thanks to the OpenMP SIMD pragma [21], there is no
guarantee of the degree to which a code is vectorized by a
given compiler, and whether it will be optimized similarly by
all compilers. Finally, in the long term, this approach is tied
to the evolution of compilers and hardware, hoping that the
upcoming releases of a compiler will not eventually require
modifications of the code.

2.1.3. Explicit Vectorization in Assembly. Any kernel can
be directly written in assembly instructions to bypass the
compiler and to interact directly with the registers and the
hardware. It is then possible to increase register use, to reduce
the cache access accordingly, and also to control the number
of instructions. However, the cost of development and main-
tenance of assembly code is high. It is difficult to know
how such code will finally be executed by a CPU because
of the complexity of modern hardware composed of units
that perform prediction/speculation, out-of-order execution,
and register renaming. While this method may be useful for
small kernels, when they represent the costly part of an appli-
cation in extreme HPC, it is difficult to apply to large func-
tions, or when complex data structures are involved. Finally,
this approach is clearly not appropriate when the objective
is to have a suitable solution for numerical scientists, not
experts in low-level C++ programming and performance
optimization.

2.1.4. Explicit Vectorization with Intrinsics. Intrinsics are
small low-level functions that are intended to be replaced
with a single assembly instruction by the compiler. Using
intrinsics allows code to be developed at the level of the
programming language—C++ in our case—while being able
to tell the compiler to use particular instructions. Therefore,
the compiler still has room for optimizations and transfor-
mations to convert an intrinsic-based code into a binary. The
compiler decides how to store an intrinsic vector variable,
which may be in a register or in memory. Additionally,
intrinsic-based codes are much easier to write, to maintain,
and to debug than assembly code and can still achieve com-
parable performance, as will be shown below. However, each
instruction set has its own intrinsics, which means that,
for example, an SSE code has to be rewritten completely
to be transformed into AVX. A conversion from one set to

the other is usually easy to perform with a word-by-word
translation but leads to code duplication and maintenance
issues, in addition to closely tying the algorithm to a specific
hardware. Moreover, developers who are not experts in low-
level optimization often struggle to use intrinsics.

2.1.5. Branch Vectorization. A wide range of scientific com-
putational kernels are naturally written with conditional
branches, such as if-else statements. In our context, a branch
describes the need to apply distinct operations to different
values in a single vector. Current CPU hardware does not
provide dedicated instructions to manage branches, mainly
for two reasons. First, the cost of the instructions cannot be
reduced by explicitly skipping some values, that is, asking
the CPU to work only on a subpart of a vector. Second,
exchanging values between vectors and building a vector
from noncontiguous values in memory are both expensive
operations.

A possible implementation of a vectorized branch is to
compute all of the branches separately and to merge the
different results. The merge can be done by multiplying the
results by 0or 1, but it is also possible to performbinary opera-
tions with a mask to select the correct values. The binary-
based approach is generally faster than the arithmetic tech-
nique because it has a lower latency.The resulting behavior is
similar to the one on GPUs, where different execution paths
of the threads from awarp are computed separately. Inastemp
provides several mechanisms to help the developer in con-
verting scalar code with branches into a fully vectorized
binary.

2.2. C++ Template Programming. Template code is parame-
terized with types. It is generic: the same code can be instant-
iated with many different data types, as long as those types
conform to some required API. When the compiler encoun-
ters an instantiation of a template with a particular type, it
replaces the generic parameterized code with code specific to
that type. A template argument type can be a native type, a
class/struct, or even a SIMD-intrinsic vector.Therefore, writ-
ing a template function offers important benefits in terms of
factorization and maintainability without degrading perfor-
mance. While this method increases the compilation work-
load, this is usually not an issue when dealing with scientific
HPC applications where the execution time is what really
matters. However, it is sometimes difficult to understand or
to find the origin of compilation errors produced by template
codes.

3. Introducing Inastemp,
the Intrinsics-as-Template Library

3.1. Object-Oriented (OO) Design. Inastemp is based on a
pure object-oriented design, with one C++ class per instruc-
tion set (SSE3, SSSE3, SSE4, etc.). Table 1 provides the existing
classes and the underlying intrinsic data type for each of
them. An alternative design would be to have only one
class per intrinsic data type/vector size. However, this would
limit the number of classes and require macros inside the
code to select the appropriate versions/implementations for

www.manaraa.com

4 Scientific Programming

Table 1: Inastemp vector classes.

Class name Accuracy Intrinsic type Possible hardware
InaVecSCALAR float,double — All
InaVecSSE3 float,double m128(d) Intel Pentium Dual-Core, AMD Athlon 64
InaVecSSSE3 float,double m128(d) Intel Atom, AMD Bobcat
InaVecSSE4 float,double m128(d) Intel Silvermont, AMD Barcelona
InaVecAVX float,double m256(d) Intel Sandy Bridge, AMD Bulldozer
InaVecAVX2 float,double m256(d) Intel Haswell, AMD Carrizo
InaVecAVX512COMMON float,double m512(d) Intel Skylake
InaVecAVX512KNL float,double m512(d) Intel Knights Landing
InaVecALTIVEC float,double vector (float | double) IBM Power-8
InaVecBestType float,double Compilation dependent Compilation dependent

(1) InaVecSSE4<double> a vec, another vec; // Build without initialization
(2) InaVecSSE4<double> a third vec(a vec); // Copy constructor
(3) a vec = another vec; // Copy operator

Code 1

each method, depending on the available instruction sets. In
contrast, our approach is highly flexible because it allows an
unlimited number of classes. Moreover, we have full control
over the loads/stores/conversions, methods, and operators
connected to each class, independently of the native intrin-
sic data type. Inside the library, we factorize some codes
and functionalities between the classes, mainly using class
inheritance. For instance, the class InaVecAVX2 inherits from
InaVecAVX since they use the same intrinsic type and AVX2
is an extension of AVX. By doing this, we can specialize some
of the InaVecAVX2methods that can be improved with AVX2
instructions or otherwise use the methods from InaVecAVX.

Constructors and Load/Store Operators. The way scalars or
pointers are converted into vector classes forms the layer
between the user code and the Inastemp kernels. Therefore,
the conversions are important to achieve compact and natural
expressions within code. All the Inastemp vector classes have
the following constructors:

(i) Inastemp classes have an empty constructor (line (1)),
a copy constructor (line (2)), and a copy operator (line
(3)) (see Code 1).

(ii) A scalar can be converted into a vector having all
the values in the vector equal to it. We deliberately
enable implicit constructor (line (1)) and assignment
operator (line (2)) because it makes it possible to put
scalars and numbers directly inside an expression (see
Code 2).

(iii) Values from a pointer can be loaded with an explicit
constructor (line (2)) or with the setFromArray
method. If the array’s address is correctly aligned,
performance can be improved by loading using the
setFromAlignedArraymethod (line (4)) (see Code 3).

(iv) Constructor from initializer list is supported (see
Code 4).

(v) The vector can be stored in memory using the stor-
eInArray and storeInAlignedArray methods. See lines
(3) and (5) (see Code 5).

These methods make it possible to write a code as shown
in Code 6, where we have two temporary objects at line (3),
one from the conversion of 4.5 and the other from the loading
of the input array.

Returning a New Object instead of Updating the Method’s
Target. Intrinsic operators do not modify the vectors given
as input parameters but return the result as a new vector
(all operations can be seen as passed/returned by value). In
reality, some operations do modify input registers, but this is
invisible at the intrinsic’s level. We followed this convention
and made the choice to return a new object containing the
result of the desired operation instead ofmodifying the object
itself. In Code 7, a new object is returnedwhenwe call the sqrt
method at line (3), and a scalar is returned when we call the
reduction/horizontal sum at line (5).

3.2. Template Functions for Inastemp Vector Classes. All the
Inastemp classes have the same interface; they provide the
samemethods and operators.Therefore, it is possible to write
template functions where the template type parameter can
be replaced by any Inastemp class. These functions are then
hardware-independent algorithms. Code 8 shows a scalar
product and two possible compilations of this function, for
AVX2 at line (7) and for AVX512KNL at line (8).The fact that
the intrinsic vectors, chosen at compile time, have different
sizes could lead to different algorithms.Therefore, one should
carefully manage the transfer from scalars to vectors so that
the functions remain correct for vectors of any size.

Selecting the Best Possible Vector Class for a Specific Hardware.
During the configuration stage, Inastemp checks for the
compiler and the hardware capabilities. By default, all the

www.manaraa.com

Scientific Programming 5

(1) InaVecSSE4<double> real to vec = 9.0; // Equivalent to: InaVecSSE4<double> . . . real to vec(9.0);
(2) real to vec = 11.0; // Equivalent to: real to vec.setFromScalar(11.0);

Code 2

(1) double∗ ptr = new double[InaVecSSE4<double>::VecLength];
(2) InaVecSSE4<double> ptr to vec(ptr); // same as .setFromArray() method
(3) alignas(InaVecSSE4<double>::Alignment) align array[InaVecSSE4<double>::VecLength];
(4) ptr to vec.setFromAlignedArray(align array); // load from aligned array

Code 3

(1) InaVecSSE4<double> ilist to vec {{1, 2}};

Code 4

instruction sets supported by both the compiler and the
CPU are enabled. Users can also activate any vector/class
supported by the compiler, even if it is not supported by
the hardware. This stage creates different macros in the main
Inastempheader and adds shortcuts to the best available class.
In Code 9, we show how a function can be templatized to the
best available set at line (11).

3.3. Abstraction Overhead. Inastemp, like other vectorization
libraries, suffers from a potential issue from its abstraction
mechanism: it may generate codes that are not fully opti-
mized. This happens when a sequence of operations must be
written differently to be fully optimized, compared to what
the library generates from successive high-level calls. This is
especially true when there are several calls to functions that
work on vectors smaller than the hardware registers, which
happens when using a SSE vector on a CPU that supports
AVX, for example. In such cases, an optimized version of
multiple calls would merge the small vectors together to fully
exploit the hardware.These optimized implementationsmust
be done by experts at the library level. Consequently, even if
we attempt to propose the more common functions for the
implementation of scientific kernels, some users will need to
ask for new features.

4. Advanced Features of Inastemp

4.1. Branch Management. In this section, we describe how to
compare/test Inastemp vectors using methods or operators.
Then, we explain how we use these comparison results in our
branch mechanisms.

4.1.1. Testing Numerical Vectors. In scalar programming, the
result from a test is Boolean, whereas, in vector program-
ming, it is a vector of Booleans with as many values as there
are in the tested numerical vectors. Inastemp provides an
abstraction over this pseudo-Boolean vector, which is either a

vector of integers, composed of 0𝑥𝐹 . . . 𝐹/0 for true/false, or
a single integer for some instruction sets, where a single bit
corresponds to one test result. The tests and comparisons on
numerical vectors can be done using static member functions
or operators, as shown in Code 10, where we perform three
different tests. First, we test if the values included in a vector
are positive at lines (6) and (7).Then, we compare two vectors
at lines (10) and (11). Finally, we test if two vectors are different
at lines (15) and (16).

Inastemp also provides static methods to obtain floating
point vectors, composed of 1./0. (true/false), instead of
pseudo-Boolean vectors. While they prove to be useful in
specific cases, they are left out of the current study, because
they are less efficient than the pseudo-Boolean vectors to
manage branches.

4.1.2. Conditional Static Functions. We provide three static
methods to merge floating point vectors, based on pseudo-
Boolean vectors: IfTrue(b, v), IfFalse(b, v), and IfElse(b, v true,
v false), where 𝑏 is a Boolean vector and v/v true/v false are
numerical vectors. IfTrue(b, v) returns a numerical vector
where the value at position 𝑖 is equal to v[i] if b[i] is true, or 0
otherwise. IfFalse(b, v) is equivalent to IfTrue(b.not(), v), and
IfElse(b, v true, v false) allows selecting values from v true or
v false if the Booleans in 𝑏 are true or false, respectively. Using
these methods, we can rewrite any branch-based scalar code
following the conversion in Table 2. This approach computes
all of the branches even if the Boolean vector is filled only
with true or false.

Code 11 presents examples for the three methods. At line
(5), we fill vector res with 10, where the condition is true,
or with 20 otherwise. We increment res by twice the current
values, at positions that are not equal to a value at line (9). At
lines (14), we set to zero the positions in res that are different
from 60, we explicitly use a precomputed Boolean vector at
line (19), and we increment some of the positions of a value
at line (22).

4.1.3. Advanced Branch Systemwith C++ Lambda/Anonymous
Functions. Using the method described above allows for the
vectorization of arbitrary expressions. However, the conver-
sion of scalar code is not straightforward, especially when
it contains a lot of branches. Inastemp provides templates

www.manaraa.com

6 Scientific Programming

(1) InaVecSSE4<double> a value = 10;
(2) double∗ ptr = new double[InaVecSSE4<double>::VecLength];
(3) a value.storeInArray(ptr); //
(4) alignas(InaVecSSE4<double>::Alignment) align array[InaVecSSE4<double>::VecLength];
(5) a value.storeInAlignedArray(align array); //

Code 5

(1) void aFunction(const double∗ input, double∗ output){ // ptr a pointer not aligned
(2) InaVecSSE4<double> sse4 9 = 9.0;
(3) const InaVecSSE4<double> result = 4.5 + sse4 9 ∗ InaVecSSE4<double>(input);
(4) result.storeInArray(output);
(5) }

Code 6: Inastemp example using the SSE4 Inastemp class (not generic).

(1) InaVecAVX2<double> a avx2 value = 100.0;
(2) // The call does not modify a avx2 value
(3) InaVecAVX2<double> another avx2 value = a avx2 value.sqrt();
(4) // The call does not modify a avx2 another value
(5) double sum = another avx2 value.horizontalSum();

Code 7: Inastemp calling method example using the AVX2 Inastemp class.

(1) template <class VecType>
(2) double ScalarProduct(const VecType& v1, const VecType& v2){
(3) return (v1 ∗ v2).horizontalSum();
(4) }
(5)
(6) // Possible usage
(7) double res 1 = ScalarProduct<InaVecAVX2<double>>(. . . .);
(8) double res 1 = ScalarProduct<InaVecAVX512KNL<double>>(. . . .);

Code 8: Templatized function example.

(1) template <class VecType>
(2) void user kernel(/∗ parameters ∗/){
(3) /∗ code ∗/
(4) }
(5)
(6) // This header contains macros about instruction sets available
(7) #include <InastempConfig.h>
(8)
(9) void user function(/∗ parameters ∗/){
(10) // InaVecBestType<double> is equivalent to InaVecBestTypeDouble
(11) user kernel<InaVecBestTypeDouble>(/∗ . . . ∗/);
(12) }

Code 9: Automatic selection of the best available instruction set.

www.manaraa.com

Scientific Programming 7

(1) // Considering InaVecBestType can contain 4 doubles
(2) InaVecBestType<double> a value = {{100.0, 50.3, −80.8, 0.3}};
(3) InaVecBestType<double> another value = {{−1, 2, −3, 4}};
(4)
(5) // [true, true, false, true]
(6) InaVecBestType<double>::InaVecMask a is positive mask = a value.isPositiveMask();
(7) InaVecBestType<double>::MaskType a is positive mask op = a value < 0.;
(8)
(9) // [false, false, true, true]
(10) InaVecBestType<double>::InaVecMask a lower than another mask = . . .

InaVecBestType<double>::IsLowerMask(a value, another value);
(11) InaVecBestType<double>::MaskType a lower than another mask op = a value < another value;
(12)
(13)
(14) // [true, true, true, true]
(15) InaVecBestType<double>::MaskType a lower than another mask = . . .

InaVecBestType<double>::IsNoEqualMask(a value, another value)
(16) InaVecBestType<double>::MaskType a lower than another mask op = a value != another value;

Code 10: Inastemp comparison-vector.

(1) // Considering InaVecBestType can contain 4 doubles
(2) InaVecBestType<double> a value = {{11.0, 8.0, 7.0, 20.0}};
(3)
(4) // Return 10 where condition is true (a value < 10) else return false
(5) InaVecBestType<double> res = InaVecBestType<double>::IfElse(a value < 10, 10., 20.);
(6) // res => {{20.0, 10.0, 10.0, 20.0}}
(7)
(8) // Return res 2 where condition is false (a value == res) else return 0
(9) res += InaVecBestType<double>::IfFalse(a value == res, res ∗ 2);
(10) // res => {{20.0, 10.0, 10.0, 20.0}} + {{2 20.0, 2 10.0, 2 10.0, 0}}
(11) // res => {{60.0, 30.0, 30.0, 20.0}}
(12)
(13) // Return res where condition is true (res != 10) else return 0
(14) res = InaVecBestType<double>::IfTrue(res != 60, res);
(15) // res => {{0, 30.0, 30.0, 20.0}}
(16)
(17) // Equivalent to: if(0 < a value) a value += 10;
(18) InaVecBestType<double>::MaskType a is positive mask = 0 < a value;
(19) a value += InaVecBestType<double>::IfTrue(a is positive mask, 10.0);
(20)
(21) // Equivalent to: if(a value < another value) a value += another value − 1
(22) a value += InaVecBestType<double>::IfTrue(a value < another value, (another value − 1.));

Code 11: Inastemp static condition statements.

for chaining branching commands, so that code can be
structured similarly to the standard if-then-else statements.
The mechanism allows for complex branches as long as they
respect the following conditional structure:

(i) If(b)must be followed byThen(v).

(ii) Then(v) can only be followed by an Else(v) or ElseIf(b).

(iii) ElseIf(b) is similar to If(b).

(iv) Else(v) ends the test and cannot be followed by
another statement.

V can be a vector or an expression that returns a vector,
including a lambda/anonymous function. The compiler is
encouraged to inline lambda functions (the C++ standard
[22] requires that lambda functions are considered similarly
to functions that the programmer has marked with the
“inline” keyword). Code 12 shows an example where we pass
vectors, instructions, or lambda functions to the test system.

4.1.4. Testing Boolean Vectors. The pseudo-Boolean vectors
are real C++ classes that provide methods and operators, like
binary operations, but also comparison methods that return
a standard C++ Boolean. One of these methods tests if all the

www.manaraa.com

8 Scientific Programming

Table 2: Pseudocode to convert a branch-based scalar algorithm to
a vectorized code using simple conditional methods. Here 𝐴 and
𝐵 can be functions or a complete scope of instructions computed
before the merge.

Scalar Using simple conditional methods
if(test){ res A = A;

res = A(); res B = B;
} res = IfElse(test, res A, res B);
else {

res = B(); // or if A and B are functions
} res = IfElse(test, A(), B());
if(test){ res 0 = IfTrue(test, A());

res 0 = A(); res 1 = IfFalse(test, B());
}
else {

res 1 = B();
}
// then use res 0 and res 1

values inside the Boolean vector are either all true or all false.
The result is potentially useful to improve the performance
by avoiding the computation of branches that are not needed.
On the other hand, this technique also adds some penalty, by
disturbing the instruction pipelining and prediction.

In Code 13 there are two methods that compute exactly
the same things: the natural exponentiation of the low-
est values between v1 and v2, minus the greatest value
between v1 and v2. Function LowestExp always computes
both (v1−v2).exp() and (v2−v1).exp() and merges the result
using a test. In LowestExpWithTest, we first look at the test
result to see if it is true for all values. In the case it is, we only
compute (v1−v2).exp()—dividing the total cost by a factor of
two—and otherwise we do as in LowestExp.

4.1.5. Branch PerformanceModel. In this section, we describe
a simple model to estimate the potential benefit of vec-
torization. Without branches, a computational kernel of
𝐶scalar instructions in scalar can be transformed into 𝐶vec =
𝐶scalar/𝑉 vectorized instructions, where𝑉 is the SIMD-width
(the number of values inside a vector). Using scalar, the cost
of a kernel with branches can be decomposed as 𝐶scalar =
𝐶core + 𝐶

𝑠
branch, where 𝐶core is the cost of the branch-inde-

pendent section and 𝐶𝑠branch the cost of the selected branch.
Vectorization allows the replacement of 𝑉 calls to a scalar
kernel by one call to its vectorized equivalent. Therefore, we
can rewrite the formula to 𝐶scalar = 𝐶core + 𝐶

branch, where

prime means in average: 𝐶branch is the average cost of all 𝑉
selected branches. When the same branch is always selected
for all calls, or if all branches have a similar cost, then we have
𝐶scalar = 𝐶

scalar.

We can bound the cost of the vectorized kernel with
branches by

𝐶vec =
(𝐶core + 𝐶all-branches)

𝑉
, (1)

where

𝐶all-branches =
𝐵

∑
𝑖=1

𝐶𝑖branch. (2)

In (2), 𝐵 is the number of branches in the kernel, and
𝐶all-branches is the cumulated cost of all branches.

To expect an improvement, the extra cost from the
computation of all branches must be less than the speedup
from the vectorization:

𝐶vec < 𝐶

scalar ⇒

𝐶all-branches < (𝑉 − 1) 𝐶core + 𝑉𝐶

branch.

(3)

If the core part is dominant, and the branch section is insigni-
ficant, subsequently the criterion is true, and we have 𝐶vec ≈
𝐶core/𝑉. If the branches are the dominant part, then we must
have 𝐶branches < 𝑉𝐶

branch to expect any benefit. This criterion

will not be true when𝑉 < 𝐵, that is if there aremore branches
than values inside the vector, but also if the average cost
of the selected branch is lower than the average cost of all
branch 𝐶branch < 𝐶branches/𝐵. Moreover, as the size of the
vectors continues to increase with the new hardware, this
beneficial limit also increases. Nevertheless, one can estimate
themaximumpotential gain for using vectorization in its own
kernel with the formula of the theoretical speedup given by

𝑆 =
𝐶scalar
𝐶vec
. (4)

4.2. Miscellaneous Features. Inastemp provides a set of oper-
ations to satisfy the needs of common computational kernels.

Horizontal Summation/Multiplication.The need for summing
or multiplying all of the elements of a vector into a resulting
scalar is widespread. We provide an efficient approach for
the different instruction sets or redirection to a dedicated
hardware instruction if it exists.

Natural Exponential Function. We provide an implementa-
tion of the natural exponential function from [23]. Inastemp
uses the dedicated exponential operators from the instruction
sets or the compilers when they exist. Computing with a
vectorized exponential might not be faster than with a scalar
one, but it avoids unpacking each value and calling the stand-
ard exponential on individual values before packing the
vector again.

Fast Power Operation. We provide an implementation of a
fast power with an integer coefficient. It performs as many
multiplications as the number of bits set in the coefficient,
which is only one more than the exponentiation-by-squaring
algorithm.

Flop Counters. It is possible to count the number of floating
point operations (Flop) done by an Inastemp class as shown
in Code 14. The Flop counter class catches every arithmetic
operation and offers several methods for retrieving the
different counters. The overhead is very low, since we just

www.manaraa.com

Scientific Programming 9

(1) // Considering InaVecBestType can contain 4 doubles
(2) InaVecBestType<double> a value = {{11.0, 8.0, 7.0, 20.0}};
(3) InaVecBestType<double> another value = {{1.0, 0.0, 2.0, 3.0}};
(4)
(5) // Example with multiple conditions
(6) a value ∗= InaVecBestType<double>::If(a value ∗ 10. < another value)
(7) .Then(another value)
(8) .ElseIf(a value < 10.).Then(a value∗10)
(9) .ElseIf(a value == 0).Then([&](){
(10) return another value.sqrt();
(11) })
(12) .Else([&](){
(13) InaVecBestType<double> velse = {{1.0, 2.0, 3.0, 4.0}};
(14) return velse ∗ 100 + 40;
(15) });

Code 12: Inastemp advanced condition manager.

(1) InaVecBestType<double> aKernel(const InaVecBestType<double> v1, const InaVecBestType<double> v2){
(2) // Same as:
(3) // return InaVecBestType<double>::IfElse(v1 < v2, (v1 − v2).exp(), (v2 − v1).exp());
(4) // Both (v1−v2).exp() and (v2−v1).exp() are computed
(5) return InaVecBestType<double>::If(v1 < v2)
(6) .Then((v1−v2).exp())
(7) .Else((v2−v1).exp());
(8) }
(9)
(10) InaVecBestType<double> aKernelWithTest(const InaVecBestType<double> v1, const . . .

InaVecBestType<double> v2){
(11) const InaVecBestType<double>::MaskType v1lowerv2 = (v1 < v2);
(12) // Similar to v1lowerv2 == InaVecBestType<double>::MaskType(true)
(13) if(v1lowerv2.isAllTrue()){
(14) return (v1−v2).exp();
(15) }
(16) return InaVecBestType<double>::If(v1lowerv2)
(17) .Then((v1−v2).exp())
(18) .Else((v2−v1).exp());
(19) }

Code 13: Inastemp testing the Boolean vector to avoid computing all branches.

increment integer values while performing floating point
operations. This functionality allows us to have a portable
performancemetric to profile a code or to compare hardware.
This tool is currently not thread-safe, and it does not count
Flops when calling sqrt and rsqrt. For these two operations,
we return the number of values that have been processed,
without giving an estimation of the number of Flops, since
it is a single hardware instruction in most cases.

5. A Brief Comparison of Inastemp and Some
Related Work

In Table 3, we compare different aspects of Inastemp and two
well-known libraries, OpenVec [11] and VCL [10]. All three
packages are written on top of intrinsics and intend to sepa-
rate the algorithms from their vectorization. However, they

also have important differences in terms of design and
potential users.

The OpenVec library is extremely lightweight because its
interface is a redirection to the real intrinsics using macro
preprocessing. This approach is appropriate for small pro-
jects, but it suffers from a static design and lack of control
due to global definitions. For example, the instruction sets
SSE3, SSSE3, SSE41, and SSE42 use the same vector data type
(m128(d)), and thus functions for these different sets have
the same prototype. Moreover, it is not easy to maintain or to
use because the complexity grows as we use more and more
instruction sets.Therefore,OpenVec is intended for program-
mers who are used to intrinsics and who seek a minimal
abstraction mechanism. Finally, this library does not support
ALTIVEC/VMX, nor does it provide any help in the compi-
lation process.

www.manaraa.com

10 Scientific Programming

(1) template <VecType>
(2) void user function(/∗ . . . ∗/){
(3)
(4) }
(5)
(6) // To compute in release mode
(7) user function<InaVecBestType<double>>(/∗ . . . ∗/);
(8)
(9) // To record the number of Flops
(10) user function<InaVecFLOPS<InaVecBestType<double>>>(/∗ . . . ∗/);
(11)
(12) // Flops counters
(13) InaVecFLOPS<InaVecBestType<double>>::GetFlopsStats().getMulOp();
(14) InaVecFLOPS<InaVecBestType<double>>::GetFlopsStats().getDivOp();
(15) InaVecFLOPS<InaVecBestType<double>>::GetFlopsStats().getAddOp();
(16) InaVecFLOPS<InaVecBestType<double>>::GetFlopsStats().getSubOp();
(17) // For Sqrt and Rsqrt it will be the number of calls times the length of the vector
(18) InaVecFLOPS<InaVecBestType<double>>::GetFlopsStats().getRsqrt();
(19) InaVecFLOPS<InaVecBestType<double>>::GetFlopsStats().getSqrt();

Code 14: Inastemp Flops counters.

Table 3: Brief comparison of OpenVec, VCL, and Inastemp.

OpenVec [11] VCL [10] Inastemp
Language C C++ C++
Use a modern repository Yes (GitHub) No Yes (GitLab)
Use CI Unit test Not public Yes
Latest update 2015 May 2017 June 2017
Support KNL Not optimized Yes Yes
Support ALTIVEC/VMX No No Yes
Design Macro interface OO with Macro Pure OO (C++11)

Target users Programmers used to intrinsics Experienced C++ programmers with
intermediate knowledge in vectorization Experienced C++ programmers

Conditional system Yes (basic) Yes (select function) Yes (advanced)
Used by real applications Unknown (no citations) Yes Yes (Internally)
Incorporation Header inclusion Header inclusion CMake subproject or installation
CPU detections None None Yes (CPUID)

VCL is a popular library that uses more abstraction than
OpenVec and is intended to be used in all kinds of programs.
It offers classes for many different types of vectors (including
signed/unsigned integer/short vectors) and is well furnished
in terms of high-level functions. The library mixes both OO
and procedural programming and uses one class per intrinsic
data type, such that macros are needed inside the classes
to apply specific instruction sets’ optimizations. This not
only makes the code more complicated, but also prohibits
production of a generic binary where different instruction
sets of the same family are embedded (similarly to feature-
specific autodispatch code paths from the Intel compiler).

Inastemp is intended to be more specific and easier to use
for numerical scientists, not experts in low-level program-
ming. Its high level of abstraction limits the possible misuse
of vectorization. Since Inastemp has been developed using
scientists’ feedback in a real application, it does not cover all

needs, and future users might require new features. However,
this approach is also a way to keep the library compact.

6. Performance Study

6.1. Hardware/Software Configurations. To study the per-
formance, flexibility, and robustness of our library, we target
different systems and compilers from a personal computer to
various HPC platforms. The version of Inastemp is 0.2.2 (the
package is freely available at https://gitlab.mpcdf.mpg.de/
bbramas/inastemp under the MIT Lisence).

I3-PC. It is equipped with an Intel Core i3-4160 CPU at
3.60GHz. We select and test the SSE41 and AVX instruction
sets. We use the compilers GCC version 6.2.0 and Clang 3.5
and thus will refer to these combinations as GCC-I3-PC and
Clang-I3-PC in the following.

https://gitlab.mpcdf.mpg.de/bbramas/inastemp
https://gitlab.mpcdf.mpg.de/bbramas/inastemp

www.manaraa.com

Scientific Programming 11

IX-HPC. It is equipped with an Intel Xeon CPU E5-2698 v3 at
2.30GHz. We select and test the SSE41 and AVX instruction
sets but passed the flag to turn on the AVX2 instructions set
in order to enable fused multiply-add (FMA). We use the
compilers GCC 6.2.0 and Intel 17.0.1 and thus will refer to
these combinations as GCC-IX-HPC and Intel-IX-HPC in
the following.

P8-OP. It is equipped with an IBM Power-8-NVL (Open-
Power) at 4.023GHz. We select and test the ALTIVEC/VMX
[24] instruction set, which is the IBM SIMD technology. We
use the compilers GCC 6.2.0 and IBMXLC++V13.1.5 (Com-
munity Edition) and thus will refer to these combinations as
GCC-P8-OP and Xl-P8-OP in the following.

Intel-KNL. It is equipped with an Intel Knights Landing
CPU Xeon Phi 7210 at 1.30 GHz. We select and test the
SSE41, AVX, and AVX512(KNL) instruction sets. We use
the compilers GCC 6.2.0 and Intel 17.0.0 and thus will refer
to these combinations as GCC-KNL and Intel-KNL in the
following. The CPU is configured in flat mode, and all tests
use the on-chip high bandwidth memory exclusively.

6.2. Objectives. The primary objective of the performance
study is to evaluatewhether using Inastemp achieves the same
performance as an explicit intrinsic-based code. Therefore,
we test different instruction sets on each hardware, not only
the best available one. However, we do not intend to analyze
the efficiency of the tested algorithms, the benefit of one
instruction set over another, or the different CPU capabilities
which are out of the scope of the current paper. We test a
scalar algorithm written in simple C/C++ that can be, in
principle, fully vectorized by the compiler. In addition, we test
a single template function using various Inastemp classes for
two accuracies, such that the results labeled Inastemp SSE and
Inastemp AVX rely on the same function but with different
classes as templates. The intrinsic-based kernels are written
using native intrinsic code, which is nothing more than a
manual inlining of the template function. All executions
are bound to a single core using numactl with the options
–physcpubind=X –localalloc (except for the KNL where we
usemembind=1). Aggressive compilation flags are used for all
tests: -O3 -march=native.

6.3. Particle-Particle Interactions (with Branch) Test Case. In
Figure 2, we provide the performance results for a custom
particle-interaction kernel (this source code is available
inside the Inastemp package, in the file: Examples/Parti-
clesWithBranch/main.cpp). The algorithm computes the
interaction between𝑁 particles with a double loop and uses
a conditional statement to apply a coefficient depending on
the distance between particles. The potential to be computed
between two particles 𝑖 and 𝑗 is given by

𝑃𝑖,𝑗 =
𝑉𝑗 + 𝐶
𝑟𝑖,𝑗
,

with 𝑖 ̸= 𝑗, where 𝐶 = 0 for 𝑟 < 𝑅, 𝐶 ̸= 0 for 𝑟 ≥ 𝑅,

(5)

where 𝑉𝑗 is the physical value of the particle 𝑗, 𝑟𝑖,𝑗 is the
distance between particles 𝑖 and 𝑗, and 𝑅 can be seen as a
cutoff distance as it frequently occurs in molecular dynamics
codes. This statement has been vectorized using our branch
mechanism, and thus the kernel does not contain any scalar
if/else and is fully vectorized as illustrated by the code snippet
in Code 15.

Figure 2 shows that Inastemp delivers the same perfor-
mance as pure intrinsic-based kernels in all cases and with
all compilers. We use only a single template function for all
the Inastemp-based execution, whereas we need one kernel
for each configuration to use native intrinsics (instruction set
× accuracy different implementations). Therefore, Inastemp
allows replacing more than 600 lines of code by less than a
hundred.

Comparing the results for different architectures shows
that the I3-PC provides the best execution time; see Figures
2(a) and 2(b).TheGCC compiler delivers better performance
than Intel compiler on the IX-HPC for both accuracies and
all instruction sets (including scalar); see Figures 2(c) and
2(d). On the KNL both compilers show similar performance;
see Figures 2(g) and 2(h). The performance on the KNL
and the Power-8 (Figure 2(e)) are not as good as the Intel
classic CPUs for the scalar or Inastemp-based codes. In fact,
the VMX instruction set on the Power-8 is similar to SSE
with a vector size of 128 bits, but the Power-8 CPU has a
high frequency such that we expected better results. For the
KNL, the frequency is lower than a classic Intel CPU and the
AVX512 vector contains twice the number of values than an
AVX vector. The Inastemp interface and extra layer do not
add significant overhead because we observe that the pure
intrinsic-based kernel is performing similarly. Finally, our
performance model, introduced in Section 4.1.5, shows its
limits because the speedup of using AVX instead of SSE is
far from two in most cases except KNL. In fact, while AVX
instructions process twice the number of values compared
to SSE, they can have a higher cost in terms of CPU-cycles.

6.4. Natural Exponential Test Case. Figure 3 shows the time
to compute a natural exponential (this source code is available
inside the Inastemp package, in the file: Examples/Exp/main
.cpp). We have only a single Inastemp template kernel that
calls the exp function provided by our library, whereas we
implemented several intrinsic-based kernels for different
instruction sets. The results show that both approaches have
similar performance. However, we experienced important
differences between compilers, especially on the KNL; see
Figures 3(g) and 3(h). We can also notice that the Intel
compiler has been able to catch our call to the scalar exp and
to transform it into an optimized one. On conventional IX-
HPC hardware (see Figures 3(c) and 3(d)), the usage of AVX
does not provide any significant speedup compared to SSE
implementations. On IBM Power-8 the performance makes
this architecture competitive with the others (Figure 3(e)).
Finally, Inastemp appears to be as efficient as native intrinsics
except for the combination of SSE and GCC.This is not a real
limitation since the Intel hardware should be used with AVX
here, but it is a good illustration of the important role of the
compilers in the optimization stage.

www.manaraa.com

12 Scientific Programming

Float Double
0

5

10

15

20

9.
48 11

.5

7.
02 9.

64

0.
94 3.

17

0.
94 3.

17

0.
86 3.

13

0.
85 2.

81

Precisions

Ti
m

e (
s)

Scalar
Inastemp Scalar
SSE3

Inastemp SSE3
AVX
Inastemp AVX

(a) Gcc-I3-PC

0

5

10

15

20

6

8.
69

5.
91 8.

81

0.
98 3.

21

1.
02 3.

17

0.
86 3.

17

0.
86 3.

17Ti
m

e (
s)

Float Double
Precisions

Scalar
Inastemp Scalar
SSE3

Inastemp SSE3
AVX
Inastemp AVX

(b) Clang-I3-PC

Float Double
0

5

10

15

20

8.
65 11

.2
8

7.
18 9.

67

0.
98 3.

43

0.
95 3.

43

0.
94 3.

06

0.
94 3.

42

Precisions

Ti
m

e (
s)

Scalar
Inastemp Scalar
SSE3

Inastemp SSE3
AVX
Inastemp AVX

(c) Gcc-IX-HPC

0

5

10

15

20 19
.7

3

25
.0

7

22
.5

7

25
.0

8

4.
39

9.
85

4.
51

10
.4

3

2.
98

8.
89

2.
88

10
.4

3

Ti
m

e (
s)

Float Double
Precisions

Scalar
Inastemp Scalar
SSE3

Inastemp SSE3
AVX
Inastemp AVX

(d) Intel-IX-HPC

Float Double
0

5

10

15

20

10
.2

2

12

9.
21 11

.1
6

3.
78 5.

01

3.
1 6.

01

Precisions

Ti
m

e (
s)

Scalar
Inastemp Scalar

ALTIVEC
Inastemp ALTIVEC

(e) Gcc-P8-OP

Float Double
0

5

10

15

20

6.
21 7.
38.

69 8.
94

1.
63 2.
43

1.
52 2.

95

Precisions

Ti
m

e (
s)

Scalar
Inastemp Scalar

ALTIVEC
Inastemp ALTIVEC

(f) Xl-P8-OP

Float Double
0

5

10

15

20 45
.2

1

62
.4

38
.9

2

55
.7

6

10
.1

19
.1

8

9.
5

19
.9

6

4.
85

10
.0

6

5.
13

10
.4

3

2.
59 6.

07

2.
59 6.

02

Precisions

Ti
m

e (
s)

Scalar
Inastemp Scalar
SSE3
Inastemp SSE3

AVX
Inastemp AVX
AVX512
Inastemp AVX512

(g) Gcc-KNL

Float Double
0

5

10

15

20 42
.0

6

48
.8

3

43
.0

5

49
.4

5

9.
36

18
.5

9

9.
34

18
.5

4.
78

9.
72

4.
74

9.
73

2.
4 5.

17

2.
4 5.

16

Precisions

Ti
m

e (
s)

Scalar
Inastemp Scalar
SSE3
Inastemp SSE3

AVX
Inastemp AVX
AVX512
Inastemp AVX512

(h) Intel-KNL

Figure 2: Execution time in seconds, for particle-particle interactions between𝑁 = 40000 particles (𝑁2 total interactions).

www.manaraa.com

Scientific Programming 13

(1) // Scalar interaction
(2) const RealType dx = positionsX[idxTarget] − positionsX[idxSource];
(3) const RealType dy = positionsY[idxTarget] − positionsY[idxSource];
(4) const RealType dz = positionsZ[idxTarget] − positionsZ[idxSource];
(5)
(6) const RealType distance = std::sqrt(dx∗dx + dy∗dy + dz∗dz);
(7) const RealType inv distance = 1/distance;
(8)
(9) if(distance < cutDistance){
(10) potentials[idxTarget] += (inv distance ∗ physicalValues[idxSource]);
(11) potentials[idxSource] += (inv distance ∗ physicalValues[idxTarget]);
(12) }
(13) else{
(14) potentials[idxTarget] += (inv distance ∗ (physicalValues[idxSource]−constantIfCut));
(15) potentials[idxSource] += (inv distance ∗ (physicalValues[idxTarget]−constantIfCut));
(16) }
(17)
(18) // Vectorized using advanced branch manager
(19) const VecType dx = targetX − VecType(&positionsX[idxSource]);
(20) const VecType dy = targetY − VecType(&positionsY[idxSource]);
(21) const VecType dz = targetZ − VecType(&positionsZ[idxSource]);
(22)
(23) const VecType distance = VecType(dx∗dx + dy∗dy + dz∗dz).sqrt();
(24) const VecType inv distance = VecOne/distance;
(25)
(26) const typename VecType::MaskType testRes = (distance < VecCutDistance);
(27)
(28) const VecType sourcesPhysicalValue = VecType(&physicalValues[idxSource]);
(29)
(30) targetPotential += inv distance ∗ VecType::If(testRes).Then([&](){
(31) return sourcesPhysicalValue;
(32) }).Else([&](){
(33) return sourcesPhysicalValue−VecConstantIfCut;
(34) });
(35) const VecType resSource = inv distance ∗ VecType::If(testRes).Then([&](){
(36) return targetPhysicalValue;
(37) }).Else([&](){
(38) return targetPhysicalValue−VecConstantIfCut;
(39) });
(40)
(41) const VecType currentSource = VecType(&potentials[idxSource]);
(42) (resSource+currentSource).storeInArray(&potentials[idxSource]);

Code 15: Code extract of the particle interactions example taken from Inastemp and introduced in Section 6.3.

6.5. General Matrix-Matrix Product (Gemm) Test Case. We
have implemented a Gemm kernel (this source code is
available inside the Inastemp package, in the file: Examples/
Gemm/main.cpp) that relies on an advanced blocking strategy
as shown in Code 16. However, as stated, our objective is
not to optimize our Gemm implementation but only to
assess the Inastemp library. Therefore, we did not tune the

block size for the different hardware/accuracies. On the IBM
Power-8 we used a more naive Gemm implementation that
appears to have better performance (comparison is not shown
here).

Figure 4 shows the Flop-rate (the number of floating
point operations per second) for the different configurations.
On the conventional Intel CPUs, the behavior follows the

www.manaraa.com

14 Scientific Programming

(1) template <class RealType, size t PanelSizeK, size t PanelSizeiA,
(2) size t PanelSizejB, class VecType>
(3) void ScalarGemmIna(const RealType∗ restrict A, const RealType∗ restrict B,
(4) RealType∗ restrict C, const size t size){
(5)
(6) const int BlockSize = VecType::VecLength;
(7)
(8) static assert(PanelSizeK >= BlockSize, ”PanelSizeK must be greater than block”);
(9) static assert(PanelSizeiA >= BlockSize, ”PanelSizeiA must be greater than block”);
(10) static assert(PanelSizejB >= BlockSize, ”PanelSizejB must be greater than block”);
(11) static assert((PanelSizeK/BlockSize)∗BlockSize == PanelSizeK, ”PanelSizeK must be a . . .multiple of block”);
(12) static assert((PanelSizeiA/BlockSize)∗BlockSize == PanelSizeiA, ”PanelSizeiA must be a . . .multiple of block”);
(13) static assert((PanelSizejB/BlockSize)∗BlockSize == PanelSizejB, ”PanelSizejB must be a . . .multiple of block”);
(14) // Restrict to a multiple of panelsize for simplcity
(15) assert((size/PanelSizeK)∗PanelSizeK == size);
(16) assert((size/PanelSizeiA)∗PanelSizeiA == size);
(17) assert((size/PanelSizejB)∗PanelSizejB == size);
(18)
(19) for(size t ip = 0 ; ip < size ; ip += PanelSizeiA){
(20) for(size t jp = 0 ; jp < size ; jp += PanelSizejB){
(21)
(22) for(size t kp = 0 ; kp < size ; kp += PanelSizeK){
(23)
(24) alignas(64) RealType panelA[PanelSizeiA∗PanelSizeK];
(25) alignas(64) RealType panelB[PanelSizeK∗BlockSize];
(26)
(27) for(size t jb = 0 ; jb < PanelSizejB ; jb += BlockSize){
(28)
(29) CopyMat<RealType, BlockSize>(panelB, PanelSizeK, &B[jp∗size + kp], size);
(30)
(31) for(size t ib = 0 ; ib < PanelSizeiA ; ib += BlockSize){
(32)
(33) if(jb == 0){
(34) CopyMat<RealType, BlockSize>(&panelA[PanelSizeK∗ib], PanelSizeK, . . .

&A[(ib+ip)∗size + kp], size);
(35) }
(36)
(37) for(size t idxRow = 0 ; idxRow < BlockSize ; ++idxRow){
(38) for(size t idxCol = 0 ; idxCol < BlockSize ; ++idxCol){
(39) VecType sum = 0.;
(40) for(size t idxK = 0 ; idxK < PanelSizeK ; idxK += BlockSize){
(41) sum += VecType(&panelA[(idxRow+ib)∗PanelSizeK+ idxK])
(42) ∗ VecType(&panelB[idxCol∗PanelSizeK+ idxK]);
(43) }
(44) C[(jp+jb+idxCol)∗size + ip + ib + idxRow] += sum.horizontalSum();
(45) }
(46) }
(47) }
(48) }
(49) }
(50) }
(51) }
(52) }

Code 16: Gemm function taken from the Inastemp examples and studied in Section 6.5.

www.manaraa.com

Scientific Programming 15

Float Double
0

10

20

30

40

9.
82 17

.2
1

9.
79 16

.5
8

7.
24

17
.8

9.
51

21
.1

4.
09 10

.6

4.
09 10

.6

Precisions

Scalar
Inastemp Scalar
SSE41

Inastemp SSE41
AVX
Inastemp AVX

Ti
m

e (
1
0
−
9

s)

(a) Gcc-I3-PC

Float Double
0

10

20

30

40

10
.9

7 17
.8

8

10

17
.5

7.
19

17
.2

7.
19

17
.1

4.
35 9.

57

4.
34 9.

56

Precisions

Scalar
Inastemp Scalar
SSE41

Inastemp SSE41
AVX
Inastemp AVX

Ti
m

e (
1
0
−
9

s)

(b) Clang-I3-PC

Float Double
0

10

20

30

40

9.
24

8.
85

8.
9

8.
84

2.
46

15

8.
44

21
.7

3.
75 9.

81

3.
76 9.

92

Precisions

Scalar
Scalar Inastemp
SSE41

Inastemp SSE41
AVX
Inastemp AVX

Ti
m

e (
1
0
−
9

s)

(c) Gcc-IX-HPC

Float Double
0

10

20

30

40

12 13
.2

11
.4 13
.2

4.
32 5.
43

4.
41 5.
565.
87 6.
14

5.
85 6.
12

Precisions

Scalar
Scalar Inastemp
SSE41

Inastemp SSE41
AVX
Inastemp AVX

Ti
m

e (
1
0
−
9

s)

(d) Intel-IX-HPC

Float Double
0

10

20

30

40

32
.7

25
.532

.4

25
.5

6.
8

15

6.
95

14
.6

Precisions
Scalar
Inastemp Scalar

ALTIVEC
Inastemp ALTIVEC

Ti
m

e (
1
0
−
9

s)

(e) Gcc-P8-OP

Float Double
0

10

20

30

40

1.
87

1.
41

12 8.
56

6.
51

15
.5

6.
51 11

.8

Precisions
Scalar
Inastemp Scalar

ALTIVEC
Inastemp ALTIVEC

Ti
m

e (
1
0
−
9

s)

(f) Xl-P8-OP

Float Double
0

10

20

30

40

10
7

10
7

Precisions
Scalar
Inastemp Scalar
SSE41
Inastemp SSE41

AVX
Inastemp AVX
AVX512
Inastemp AVX512

Ti
m

e (
1
0
−
9

s)

17
9

17
9

18
.2

52
.1

46
.6

81
.9

14
.7

32
.7

14
.7

32
.6

12
.8

21
.4

12
.7

22
.3

(g) Gcc-KNL

Float Double
0

10

20

30

40

14
.3 18

.6

14
.1 18

.626
.9

64
.1

27
.9

63
.3

52
.3

26

52
.3

25
.6

16

20
.7

15
.8 22

.3

Precisions

Scalar
Inastemp Scalar
SSE41
Inastemp SSE41

AVX
Inastemp AVX
AVX512
Inastemp AVX512

Ti
m

e (
1
0
−
9

s)

(h) Intel-KNL

Figure 3: Average time in nanoseconds (10−9 s) to compute a natural exponential, averaged over 51200000 computations.

www.manaraa.com

16 Scientific Programming

Float Double
0

20

40

3 2.
993.
21

3.
14

18
.2

4

7.
96

19
.6

6

8

32
.1

16
.9

2

31
.2

17
.0

7

Precisions

G
Fl

op
/s

Scalar
Inastemp Scalar
SSE41

Inastemp SSE41
AVX
Inastemp AVX

(a) Gcc-I3-PC

Float Double
0

20

40

3.
41

3.
22

3.
33

3.
21

19
.0

4

8.
54

21
.1

4

8.
83

31

16
.921

.2
7

17
.7

Precisions

G
Fl

op
/s

Scalar
Inastemp Scalar
SSE41

Inastemp SSE41
AVX
Inastemp AVX

(b) Clang-I3-PC

Float Double
0

20

40

2.
3

2.
2

2.
3

2.
18

17
.8

1

6.
09

17
.7

6

5.
91

35
.7

5

15
.3

8

41
.2

15
.1

8

Precisions

G
Fl

op
/s

Scalar
Inastemp Scalar
SSE41

Inastemp SSE41
AVX
Inastemp AVX

(c) Gcc-IX-HPC

Float Double

10

20

30

40

28
.5

2

11
.2

5

26
.5

6

12
.7

8

17
.1

3

7.
45

16
.8

9

5.
12

32
.5

5

14
.7

4

36
.3

9

14
.8

9

Precisions

G
Fl

op
/s

Scalar
Inastemp Scalar
SSE41

Inastemp SSE41
AVX
Inastemp AVX

(d) Intel-IX-HPC

Float Double

0

20

40

1.
77

1.
311.
58

1.
58

17
.7

9

5

12
.4

7

4.
78

Precisions

G
Fl

op
/s

Scalar
Inastemp Scalar

ALTIVEC
Inastemp ALTIVEC

(e) Gcc-P8-OP

Float Double
0

20

40

3.
52

2.
133.
67

∗

2.
16

∗10
.2

2∗

3.
55

∗10
.0

5∗

3.
55

∗

Precisions

G
Fl

op
/s

Scalar
Inastemp Scalar

ALTIVEC
Inastemp ALTIVEC

(f) Xl-P8-OP

Float Double

0

20

40

0.
49

0.
63

0.
6

0.
594.

59

1.
654.

98

1.
47

9.
54

4.
099.

26

4.
4311

.2
8

6.
9911

.7
2

7.
6

Precisions

G
Fl

op
/s

Scalar
Inastemp Scalar
SSE41
Inastemp SSE41

AVX
Inastemp AVX
AVX512
Inastemp AVX512

(g) Gcc-KNL

Float Double

0

20

40

7.
92

5.
94

4.
9

4.
34.
65

1.
445.

07

1.
5

11
.4

5

4.
3610

.6

4.
78.

1 8.
32

19
.3

10
.0

2

Precisions

G
Fl

op
/s

Scalar
Inastemp Scalar
SSE41
Inastemp SSE41

AVX
Inastemp AVX
AVX512
Inastemp AVX512

(h) Intel-KNL

Figure 4: Gigaflop per second to compute a general squarematrix-matrix product, where the averagewas taken from three executions.Matrix
dimension is𝑁 = 2058 in Double and𝑁 = 2560 in Float. (∗)These executions use a simpler blocking scheme that shows better performance
for the respective configurations (Xl-P8-OP Figure 4(f)).

www.manaraa.com

Scientific Programming 17

expected pattern and using SSE or AVX provides a significant
speedup; see Figures 4(a), 4(b), 4(c), and 4(d). However,
the Clang compiler has not been able to apply the same
degree of optimization for the AVX in Float, making the
Inastemp-based kernel slower. On the IX-HPC, the Inastemp
Float kernel has been optimized better by Intel and GCC.
Additionally, one can note that the Intel compiler had suc-
cessfully autovectorized the scalar kernels, with and without
Inastemp (Figure 4(d)). Despite the high regularity of the
data access in addition to the loop range known at compile
time, GCC has not been able to do so, which illustrates the
need for vectorization libraries. The performance of the IBM
Power 8, Figure 4(e), is improved by the vectorization but
remains low compared to Intel hardware. On the KNL, the
Intel compiler applied a higher degree of optimization than
GCC for the scalar kernels, Figures 4(g) and 4(h). However,
the Intel compiler fails to optimize the pure intrinsic-based
AVX512 kernel, even though it succeeds with the template
Inastemp-based kernel.

7. Conclusions

We present Inastemp, a lightweight, open-source library
dedicated to the development of computationally intensive
kernels and their SIMD optimization. Inastemp runs on all
majorCPUarchitectures, including the recently released IBM
Power-8 or Intel-KNL, and provides similar performance
to pure intrinsic-based implementations in most configura-
tions. Furthermore, Inastemp fosters the creation of elegant
and maintainable code design that is crucial for long-living
HPC applications. Inastemp facilitates the abstraction of
the vectorization mechanism from the hardware and allows
the replacement of several low-level implementations by a
single template function. Its simplicity makes it usable for
computational scientists, but the library can also be extended
by HPC experts. Moreover, codes which utilize Inastemp are
future-proof for upcoming SIMD instruction sets and will
benefit from any Inastemp update without any modification,
the optimizations being delegated to Inastemp developers.

In addition, our results show the limits of autovector-
ization by the compiler and illustrate the benefit of using
intrinsic-based kernels. As a perspective, we intend to provide
more mathematical functions, such as the logarithm, and
to add the compilation tools to build generic binaries.
Finally, the Inastemp library is already used in the Max-
Planck Society in various projects supported by the MPCDF.
The MPCDF will provide long-term support for Inastemp,
including the incorporation of future architectures, and will
address any issues which arise within the code.

Conflicts of Interest

The author declares that there are no conflicts of interest
regarding the publication of this paper.

References

[1] G. Hager and G. Wellein, Introduction to High Performance
Computing for Scientists and Engineers, CRC Press, Inc., Boca
Raton, FLa, USA, 1st edition, 2010.

[2] B. Videau, K. Pouget, L. Genovese et al., “D5. 5–boast: a meta-
programming framework to produce portable and efficient
computing kernels for hpc applications version 1.0,”Mont-Blanc
Consortium Partners, 2017, http://www.montblanc-project.eu/
sites/default/files/D5.5 0.pdf.

[3] J. Falcou and J. Serot, “Application of template-based metapro-
gramming compilation techniques to the efficient implemen-
tation of image processing algorithms on SIMD-capable pro-
cessors,” in Proceedings of the Advanced Concepts for Intelligent
Vision Systems, Brussels, Belgium, 2004.

[4] R. Möller, “Design of a low-level C++ template SIMD library,”
Tech. Rep., Universität Bielefeld, 2016, https://www.ti.uni-
bielefeld.de/downloads/publications/templateSIMD.pdf.

[5] M. Kretz, Extending C++ for explicit data-parallel programming
via SIMD vector types [Ph.D. thesis], Johann Wolfgang Goethe-
Universität, 2015.

[6] M.Kellogg, “QuickVecC++Library,” 2016, https://www.andrew
.cmu.edu/user/mkellogg/15-418/proposal.html.

[7] H. Wang, P. Wu, I. G. Tanase, M. J. Serrano, and J. E. Mor-
eira, “Simple, portable and fast SIMD intrinsic programming:
Generic SIMD Library,” in Proceedings of the 2014 1st ACM
SIGPLAN Workshop on Programming Models for SIMD/Vector
Processing (WPMVP ’14), pp. 9–16, New York, NY, USA,
February 2014.

[8] M. Gross, “Neat SIMD: Elegant vectorization in C++ by using
specialized templates,” in Proceedings of the 14th International
Conference on High Performance Computing and Simulation
(HPCS ’16), pp. 848–857, Innsbruck, Austria, July 2016.

[9] R. Leißa, I. Haffner, and S. Hack, “Sierra: A SIMD extension for
C++,” in Proceedings of the 2014 1st ACM SIGPLAN Workshop
on Programming Models for SIMD/Vector Processing (WPMVP
’14), pp. 17–24, New York, NY, USA, February 2014.

[10] Agner Fog, “VCL C++ vector class library,” 2017, http://www
.agner.org/optimize/vectorclass.pdf.

[11] P. Souza, L. Borges, C. Andreolli, and P.Thierry, “OpenVec port-
able SIMD intrinsics,” in Proceedings of the 2nd EAGEWorkshop
on High Performance Computing for Upstream, pp. 82–86,
September 2015.

[12] B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl,
“GRGMACS 4: algorithms for highly efficient, load-balanced,
and scalable molecular simulation,” Journal of Chemical Theory
and Computation, vol. 4, no. 3, pp. 435–447, 2008.

[13] E. Cieren, Molecular dynamics for exascale supercomputers
[Ph.D. thesis], Université de Bordeaux, 2015, http://www.theses
.fr/2015BORD0174.

[14] M. Heroux, “Opportunities and challenges in developing and
using scientific libraries on emerging architecture,” in Proceed-
ings of the Conference onComputational Science and Engineering
(CSE ’15), SIAM, Salt Lake City, Utah, USA, 2015.

[15] B. Adelstein, “Modern C++ For HPC,” Lawrence Berkeley
National Laboratory, 2016, Berkeley C++ Summit, https://sites
.google.com/a/lbl.gov/berkeleycppsummit2016/.

[16] P. M. Kogge, The Architecture of Pipelined Computers, CRC
Press, 1981.

[17] Intel, “Intel 64 and IA-32 architectures software developer’s
manual: Instruction set reference (2A, 2B, 2C, and 2D),” Tech.
Rep., 2016, https://software.intel.com/en-us/articles/intel-sdm.

[18] Intel, “Introduction to Intel AdvancedVector Extensions,” Tech.
Rep., 2016, https://software.intel.com/en-us/articles/introduc-
tion-to-intel-advanced-vector-extensions.

http://www.montblanc-project.eu/sites/default/files/D5.5_0.pdf
http://www.montblanc-project.eu/sites/default/files/D5.5_0.pdf
https://www.ti.uni-bielefeld.de/downloads/publications/templateSIMD.pdf
https://www.ti.uni-bielefeld.de/downloads/publications/templateSIMD.pdf
https://www.andrew.cmu.edu/user/mkellogg/15-418/proposal.html
https://www.andrew.cmu.edu/user/mkellogg/15-418/proposal.html
http://www.agner.org/optimize/vectorclass.pdf
http://www.agner.org/optimize/vectorclass.pdf
http://www.theses.fr/2015BORD0174
http://www.theses.fr/2015BORD0174
https://sites.google.com/a/lbl.gov/berkeleycppsummit2016/
https://sites.google.com/a/lbl.gov/berkeleycppsummit2016/
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/introduction-to-intel-advanced-vector-extensions
https://software.intel.com/en-us/articles/introduction-to-intel-advanced-vector-extensions

www.manaraa.com

18 Scientific Programming

[19] Intel, “Intel Architecture Instruction Set Extensions Program-
ming Reference,” Tech. Rep., 2016, https://software.intel.com/
sites/default/files/managed/c5/15/architecture-instruction-set-
extensions-programming-reference.pdf.

[20] B. Bramas, O. Coulaud, and G. Sylvand, “Time-Domain BEM
for the Wave Equation: Optimization and Hybrid Paralleliza-
tion,” in Euro-Par 2014 Parallel Processing, vol. 8632 of Lecture
Notes in Computer Science, pp. 511–523, Springer International
Publishing, 2014.

[21] OpenMP Architecture Review Board, “OpenMP application
program interface 4.0,” 2013, http://www.openmp.org/wp-
content/uploads/OpenMP4.0.0.pdf.

[22] INCITS/ISO/IEC, “ISO International Standard ISO/IEC 14882:
2014 - Programming languages - C++, page 95, Section 5.1.2-
5,” Tech. Rep., International Organization for Standardiza-
tion (ISO), Geneva, Switzerland, 2016, http://webstore.ansi.org/
RecordDetail.aspx?sku=INCITS/ISO/IEC+14882:2014+.

[23] A. C. I. Malossi, Y. Ineichen, C. Bekas, and A. Curioni, “Fast
exponential computation on simd architectures,” in Proceedings
of the HIPEAC-WAPCO, Amsterdam, The Netherlands, 2015.

[24] IBM, “Performance Optimization and Tuning Techniques for
IBM Power Systems Processors Including IBM Power8,” 2016,
https://www.redbooks.ibm.com/redbooks/pdfs/sg248171.pdf.

https://software.intel.com/sites/default/files/managed/c5/15/architecture-instruction-set-extensions-programming-reference.pdf
https://software.intel.com/sites/default/files/managed/c5/15/architecture-instruction-set-extensions-programming-reference.pdf
https://software.intel.com/sites/default/files/managed/c5/15/architecture-instruction-set-extensions-programming-reference.pdf
http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
http://webstore.ansi.org/RecordDetail.aspx?sku=INCITS/ISO/IEC+14882:2014+
http://webstore.ansi.org/RecordDetail.aspx?sku=INCITS/ISO/IEC+14882:2014+
https://www.redbooks.ibm.com/redbooks/pdfs/sg248171.pdf

www.manaraa.com

Submit your manuscripts at
https://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

www.manaraa.com

Copyright of Scientific Programming is the property of Hindawi Limited and its content may
not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's
express written permission. However, users may print, download, or email articles for
individual use.

